Cambridge International Examinations Cambridge International General Certificate of Secondary Education | CANDIDATE
NAME | | | | | |-------------------|--|---------------------|--|--| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | CHEMISTRY 0620/31 Paper 3 (Extended) October/November 2015 1 hour 15 minutes Candidates answer on the Question Paper. No Additional Materials are required. ## **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. Electronic calculators may be used. A copy of the Periodic Table is printed on page 12. You may lose marks if you do not show your working or if you do not use appropriate units. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate. [Total: 13] | (a) Th | ne symbols of six particles are shown below. | |---------------|--| | | Na+ Ca ²⁺ Kr P Si O ²⁻ | | | elect from the list of particles to answer the following questions. A particle may be selected note, more than once or not at all. | | (i) | Which two ions have the same electronic structure? [1] | | (ii) | Which ion has the same electronic structure as an atom of argon? [1] | | (iii) | Which atom can form an ion of the type X ³⁻ ?[1] | | (iv) | Which atom can form a hydride which has a formula of the type XH ₄ ? [1] | | (b) (i) | How many protons, neutrons and electrons are there in one copper(II) ion ⁶⁴ ₂₉ Cu ²⁺ ? | | | number of protons | | | number of neutrons | | | number of electrons[2] | | (ii) | ⁴⁵ Sc represents an atom of scandium. | | | How many nucleons and how many charged particles are there in one atom of scandium? | | | number of nucleons | | | number of charged particles[2] | | (c) Tv | vo different atoms of sodium are $^{23}_{11}$ Na and $^{24}_{11}$ Na. | | (i) | Explain why these two atoms are isotopes. | | | | | | [2] | | (ii) | ²⁴ Na is radioactive. It changes into an atom of a different element which has one more proton. | | | Identify this element. | | | [1] | | (iii) | State two uses of radioactive isotopes. | | | | | | [2] | 2 | | scribe how to separate the following. In each example, give a description of the procedure use
I explain why this method works. | ed | |-----|--|----------------------------| | (a) | Copper powder from a mixture containing copper and zinc powders. | | | | procedure | | | | explanation | | | | |
[3] | | (b) | Nitrogen from a mixture of nitrogen and oxygen. | | | | procedure | | | | explanation | | | | [| [3] | | (c) | Glycine from a mixture of the two amino acids glycine and alanine. Glycine has the lower value. | $R_{\scriptscriptstyle f}$ | | | procedure | | | | explanation | | | | [|
[2] | | (d) | Magnesium hydroxide from a mixture of magnesium hydroxide and zinc hydroxide. | | | | procedure | | | | explanation | | | | | [3] | | | [Total: 1 | 11] | 4 Sulfuric acid is made by the Contact process. 3 | (a) | Sulf | fur is burned by spraying droplets of molten sulfur into air. | | |------|------------|---|-----| | | Sug | gest and explain an advantage of using this method. | | | | | | | | | | | [2] | | (I-) | T l | fellowing a southern proposed the constitution in the Ocatest proposed | | | (b) | The | following equation represents the equilibrium in the Contact process. | | | | | $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ | | | | • | gen is supplied from the air. composition of the reaction mixture is 1 volume of sulfur dioxide to 1 volume of oxygen | | | | Wha | at volume of air contains 1 dm³ of oxygen? | | | | | dm³ | [1] | | | | | | | (c) | Sulf | fur dioxide is more expensive than air. | | | | Wha | at is the advantage of using an excess of air? | | | | | | | | | | | [2] | | (d) | | forward reaction is exothermic. The reaction is usually carried out at a temperature between and 450 °C. | en | | | (i) | What is the effect on the position of equilibrium of using a temperature above 450 °C? Explain your answer. | | | | | | ••• | | | | | | | | | | [2] | | | (ii) | What is the effect on the rate of using a temperature below 400 °C? Explain your answer. | | | | | | | | | | | | | | | ······ | [3] | | (e) | A lo | ow pressure, 2 atmospheres, is used. At equilibrium, about 98% SO ₃ is present. | | |-----|------|--|---------| | | (i) | What is the effect on the position of equilibrium of using a higher pressure? | | | | | | [1] | | | (ii) | Explain why a higher pressure is not used. | | | | | | [1] | | (f) | Nar | me the catalyst used in the Contact process. | | | | | | [1] | | (g) | Des | scribe how concentrated sulfuric acid is made from sulfur trioxide. | [2] | | | | [Tot | al: 15] | | | | | 6 | | |---|-----|------|--|-----| | 4 | (a) | Syr | nthetic polymers are disposed of in landfill sites and by burning. | | | | | (i) | Describe two problems caused by the disposal of synthetic polymers in landfill site | s. | | | | | | | | | | | | [2] | | | | (ii) | Describe one problem caused by burning synthetic polymers. | | | | | | | [1] | | | (b) | Sta | te two uses of synthetic polymers. | | | | | | | | | | | | | [1] | | | (c) | The | e structural formulae of two synthetic polymers are given below. | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | 0 0 0 polymer B | | | | | (i) | Draw the structural formula of the monomer of polymer A . | [2] | | | | (ii) | Identify the functional group circled in polymer B . | |[1] (iii) Deduce the two types of organic compound which have reacted to form polymer B. | (d) | Explain the difference between addition and condensation polymers. Classify ${\bf A}$ and ${\bf B}$ as either addition or condensation polymers. | |-----|--| | | | | | | | | | | | [3] | | | [Total: 12] | 5 | (a) A c | compound, X , contains 55.85% carbon, 6.97% hydrogen and 37.18% oxygen. | | |---------|---|-----| | (i) | How does this prove that compound X contains only carbon, hydrogen and oxygen? | | | (ii) | Use the above percentages to calculate the empirical formula of compound X . | [1] | | | | | | | | [2] | | (iii) | The $M_{\rm r}$ of X is 86. | | | | What is its molecular formula? | | | | | | | | | | | | | [0] | | | | [2] | | (b) (i) | Bromine water changes from brown to colourless when added to X . | | | | What does this tell you about the structure of X? | | | | | [1] | | (ii) | Magnesium powder reacts with an aqueous solution of X. Hydrogen is evolved. | | | | What does this tell you about the structure of X? | F41 | | (iii) | X contains two different functional groups. | [1] | | (111) | Draw a structural formula of X . | | | | | | [1] [Total: 8] Carbon and silicon are elements in Group IV. They both form oxides of the type XO₂. | (a) S | Silicon(IV) oxide, SiO ₂ , has a macromolecular structure. | |-------|--| | (| i) Describe the structure of silicon(IV) oxide. | | | | | | | | | | | | | | | [3] | | (i | i) State three properties which silicon(IV) oxide and diamond have in common. | | | | | | | | | [3] | | (ii | i) How could you show that silicon(IV) oxide is acidic and not basic or amphoteric? | | | | | | | | | [2] | | | Explain why the physical properties of carbon dioxide are different from those of diamond and silicon(IV) oxide. | | • | [1] | | • | [7] [Total: 9] | | 7 The rate of a photochemical reaction is affected by light | 7 | The rate | of a | photochemical | reaction is | affected | by | lig | |---|---|----------|------|---------------|-------------|----------|----|-----| |---|---|----------|------|---------------|-------------|----------|----|-----| | (2) | The decom | nosition of | f eilvar l | hromida | ic tha | haeie | of film | photography. | This is a | raday | reaction | |------------|-----------|-------------|------------|---------|---------|-------|-----------|---------------|------------|-------|----------| | (a) | THE decom | position of | ı Siivei i | Diomiae | 15 1116 | บสราร | OI IIIIII | priolography. | 11115 IS a | TEUUX | reaction | $$2AgBr \rightarrow 2Ag + Br_2$$ cream black step 1 $$2Br^- \rightarrow Br_2 + 2e^-$$ step 2 Ag $$^+$$ + e $^ \rightarrow$ Ag | (i) | Which step | is r | reduction? | Explain | your | answer. | |-----|------------|------|------------|---------|------|---------| |-----|------------|------|------------|---------|------|---------| |
 | [1] | |------|-----| | | | (ii) Which ion is the oxidising agent? Explain your answer. | [1] | |-----| |-----| (b) A piece of white paper was coated with silver bromide and exposed to the light. Sections of the paper were covered as shown in the diagram. Predict the appearance of the different sections of the paper after exposure to the light and the removal of the card. Explain your predictions. |
 |
 |
 | | |------|------|------|--| |
 |
 |
 | | | | | | | © UCLES 2015 [Total: 12] | (c) | carl | Photosynthesis is another example of a photochemical reaction. Green plants can make simple carbohydrates, such as glucose. These can polymerise to make more complex carbohydrates, such as starch. | | | | | | |-----|-------|--|-----|--|--|--|--| | | (i) | Write a word equation for photosynthesis. | | | | | | | | | | [2] | | | | | | | (ii) | Name the substance which is responsible for the colour in green plants and is essential photosynthesis. | for | | | | | | | | | [1] | | | | | | | (iii) | The structural formula of glucose can be represented by H—O——O—H. | | | | | | | | | Draw part of the structural formula of starch which contains two glucose units. | [2] | | | | | | | (iv) | Living organisms need carbohydrates for respiration. | | | | | | | | | What is meant by respiration? | | | | | | | | | | [1] | | | | | DATA SHEET The Periodic Table of the Elements | | 0 | 4 He lium 2 | 20
Neon
10
40 | Argon
18 | 84 Kr
Krypton
36 | 131 Xe Xenon Xenon 54 | Radon
86 | | 175 Lu Lutetium 71 | Lr
Lawrencium
103 | |-------|----|--------------------|---|----------------------|-----------------------------------|-----------------------------------|-----------------------------------|------------------------------------|--------------------------------------|---| | | =/ | | 19
Fluorine
9
35.5 | Chlorine
17 | 80
Br
Bromine
35 | 127
I lodine | At
Astatine
85 | | 173
Yb
Ytterbium
70 | Nobelium | | | > | | 16
Owgen
8 | Sulfur
16 | 79 Selenium 34 | 128 Te Tellurium | Po Polonium 84 | | 169
Tm
Thullium
69 | Md
Mendelevium
101 | | | > | | 14 Nitrogen 7 | Phosphorus
15 | 75
AS
Arsenic
33 | Sb
Antimony
51 | 209 Bi Bismuth | | 167
Er
Erbium
68 | Fm
Fermium
100 | | | ≥ | | 12 Carbon 6 28 | Silicon
14 | 73 Ge Germanium | Sn In 150 | 207 Pb Lead | | 165
Ho
Holmium
67 | ES
Einsteinium
99 | | | ≡ | | 11
B
Baron
5
27
A1 | Aluminium
13 | 70
Ga
Gallium
31 | 115
I n
Indium | 204 T1 Thallium | | 162
Dy
Dysprosium
66 | Ca lifornium | | | | | | | 65
Zn
Zinc
30 | 112
Cd
Cadmium
48 | 201
Hg
Mercury
80 | | 159
Tb
Terbium
65 | BK Berkelium 97 | | | | | | | 64
Copper
29 | 108
Ag
Siiver
47 | 197
Au
Gold | | 157
Gd
Gadolinium
64 | Curium
96 | | Group | | | | | 59
Nickel | 106 Pd Palladium 46 | 195 Pt Platinum 78 | | 152
Eu
Europium
63 | Am
Americium
95 | | פֿ | | | | | 59
Cobalt | 103
Rh
Rhodium
45 | 192
I r
Iridium | | Smarium 62 | Pu Plutonium | | | | T Hydrogen | | | 56
Fe
Iron | Ruthenium 44 | 190
OS
Osmium
76 | | Pm
Promethium
61 | Neptunium | | | | | | | Mn
Manganese
25 | Tc
Technetium | 186 Re Rhenium 75 | | 144 Nd Neodymium 60 | 238
U
Uranium
92 | | | | | | | 52
Cr
Chromium
24 | 96
Mo
Molybdenum
42 | 184 W Tungsten 74 | | Pr
Praseodymium
59 | Pa Protactinium | | | | | | | 51
V
Vanadium
23 | 93
Nb
Niobium | 181 Ta Tantalum | | 140 Ce Cerium | 232
Th
Thorium | | | | | 48 Titanium 22 | 2r
Zrconium
40 | 178 Hf Hafnium 72 | | | nic mass
Ibol
nic) number | | | | | | | | | Scandium | 89 ≺ | 139 La Lanthanum | 227
AC
Actinium
89 | series
eries | a = relative atomic mass X = atomic symbol b = proton (atomic) number | | | = | | Be Berylium 4 24 Mg | Magnesium
12 | 40 Ca Caldum | Strontium | 137
Ba
Barium
56 | 226
Ra
Radium
88 | *58-71 Lanthanoid series | « × ° | | | _ | | 7 Li Lithium 3 23 Na | Sodium
11 | 39
K
Potassium
19 | Rb
Rubidium
37 | 133
Cs
Caesium
55 | Francium
87 | *58-71 L _i | Key b | The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.